Recent quotes:

Researchers Watch Brain's Lining Heal After Head Injury - Neuroscience News

“The lining of the brain, with help from the immune system, has a remarkable ability to put itself back together again after injury,” said Dorian McGavern, Ph.D., scientist at the NIH’s National Institute of Neurological Disorders and Stroke and the senior author of the study published in Nature Immunology. “As we learn more about all the cells involved in the repair process, we may be able to identify potential targets for therapy that lead to better outcomes for patients.” The study came about from an observation on MRI scans of adult patients who experienced a concussion or mTBI. Around half of patients with mTBI show evidence of injury to blood vessels in the meninges, which appears on MRI scans as a vascular dye leaking out of the damaged vessels. The meninges are a collection of membranes that line the central nervous system and help protect brain and spinal cord tissue from various forms of injury. Damage to the meninges can cause cell death in underlying brain tissue.

Risk of type 1 diabetes climbs when one population of T cells falls: Study in mice links protective immune cells that form outside the thymus with autoimmune diabetes -- and suggests that gut microbes affecting this cell population may protect against disease -- ScienceDaily

The researchers now hypothesize that microbes in the gut, where most of this pTreg cell population is switched on, may be responsible for generating these protective cells and thus protecting against the autoimmune attack on pancreatic beta cells that cause type 1 diabetes. "Most of these pTregs are made in the gut," Kissler says. "We know both that gut microbes promote the development of pTregs, and that gut microbes have an impact on type 1 diabetes." Many studies in mouse models, and more recent research among human populations as well, have correlated differences in gut microbe populations with risks of developing the autoimmune condition.

Antibiotic use increases risk of severe viral disease in mice | The Source | Washington University in St. Louis

“Once you put a dent in a microbial community, unexpected things happen,” Thackray said. “Some groups of bacteria are depleted and different species grow out. So increased susceptibility may be due to both the loss of a normal signal that promotes good immunity and the gain of an inhibitory signal.” The researchers tested immune cells from mice treated with antibiotics and found that they had low numbers of an important immune cell known as killer T cells. Normally, during an infection T cells that recognize the invading virus multiply to high numbers and play a critical role in controlling the infection. Mice treated with antibiotics generated fewer such T cells.