Recent quotes:

The role of touch in regulating inter-partner physiological coupling during empathy for pain | Scientific Reports

The results indicate that the partner touch increased interpersonal respiration coupling under both pain and no-pain conditions and increased heart rate coupling under pain conditions. In addition, physiological coupling was diminished by pain in the absence of the partner’s touch. Critically, we found that high partner’s empathy and high levels of analgesia enhanced coupling during the partner’s touch.

Association of Depressive Symptoms and Heart Rate Variability in Vietnam War–Era Twins: A Longitudinal Twin Difference Study | Cardiology | JAMA Psychiatry | JAMA Network

The association between depression and autonomic dysregulation, indexed by HRV, is bidirectional, with stronger evidence suggesting that autonomic function affects depression risk rather than vice versa. The opposite causal pathway from depression to lower HRV is mostly driven by antidepressant use. These findings highlight an important role of autonomic nervous system in the risk of depression and contribute new understanding of the mechanisms underlying the comorbidity of depression and cardiovascular disease.

Tick tock: Study links body clock to mood disorders | AFP.com

or the new study, an international team led by University of Glasgow psychologist Laura Lyall analysed data -- taken from the UK Biobank, one of the most complete long-term health surveys ever done -- on 91,105 people aged 37 to 73. The volunteers wore accelerometers that measured patterns of rest and activity and had this record compared to their mental history, also taken from the UK Biobank. Individuals with a history of disrupting their body's natural rhythm -- working night shifts, for example, or suffering repeated jetlag -- also tended to have a higher lifetime risk of mood disorders, feelings of unhappiness, and cognitive problems, the researchers found.

Brain Activity Alternates While Stepping - Neuroscience News

The researchers found that activity in the 20-30 Hz (beta) range alternated between the left and right STN when the opposite foot touched the ground and the other foot was to be raised. The introduction of a metronome synchronized to the cartoon steps improved participants’ accuracy and enhanced their STN beta activity accordingly.

Seniors stick to fitness routines when they work out together -- ScienceDaily

Over the 24-week period, participants who worked out with people their own age attended an average of 9.5 more classes than counterparts in the mixed-age group. Participants in the mixed-age group averaged 24.3 classes. Participants in the same-age, mixed-gender group averaged 33.8 classes, and participants in the same-age, same-gender group averaged 30.7 classes.

Brain Waves Synchronize at Live Music Performances - Neuroscience News

“When the brain waves were synchronized in this live condition, they synchronized around the rate at which people tend to feel the beat. We call this ‘the delta band.’ This seemed to be the highest in the live condition.” This indicates greater enjoyment of music in the presence of a live performance, as well as greater enjoyment when experienced as part of a group.

A neuroscientist who studies decision-making reveals the most important choice you can make | World Economic Forum

His neuroscience research has found that when two people are in each other's company, their brain waves will begin to look nearly identical. One study of moviegoers, for instance, found the most engaging trailers all produced similar patterns in people's brains. "The more we study engagement, we see time and again that just being next to certain people actually aligns your brain with them," based on their mannerisms, the smell of the room, the noise level, and many other factors, Cerf said. "This means the people you hang out with actually have an impact on your engagement with reality beyond what you can explain. And one of the effects is you become alike."

A heavy working memory load may sink brainwave 'synch' -- ScienceDaily

They suggest that the "coupling," or synchrony, of brain waves among three key regions breaks down in specific ways when visual working memory load becomes too much to handle. "When you reach capacity there is a loss of feedback coupling," said senior author Earl Miller, Picower Professor of Neuroscience at MIT's Picower Institute for Learning and Memory. That loss of synchrony means the regions can no longer communicate with each other to sustain working memory.

Attention deficit disorders could stem from impaired brain coordination: Researchers uncover link absent between brain regions in attention deficit hyperactivity disorder, schizophrenia -- ScienceDaily

When the researchers attached probes to the mice to measure brain activity, they found mice without ErbB4 had brain regions that were acting independently, rather than together in synchrony. In particular, the researchers studied the prefrontal cortex -- normally associated with decision-making -- and the hippocampus -- a region that supports memory. These two regions coordinate for a variety of brain tasks, including memory and attention. "We found top-down attention, previously thought to be controlled by the prefrontal cortex, also involves the hippocampus in a manner where the two regions are highly synchronized when attention is high," says Mei. "Our findings give importance to synchrony between the prefrontal cortex and hippocampus in top-down attention and open up the possibility that attention deficit disorders, like ADHD, might involve impairments in the synchrony between these two regions." According to the new study, ErbB4 coordinates a cascade of brain signals that "bridge" the two regions. ErbB4 itself encodes a receptor found on the surface of brain cells. The study found that when a protein (neuregulin-1) attaches to the ErbB4 receptor, it triggers a chain reaction that ultimately determines neurotransmitter levels in the prefrontal cortex and hippocampus. Without ErbB4, neurotransmitter levels go awry. The researchers discovered mice lacking ErbB4 have low levels of a particular neurotransmitter -- GABA, or gamma-aminobutyric acid -- in their brain. Low GABA levels can lead to impaired top-down attention in the prefrontal cortex, and impairs how the prefrontal cortex can efficiently coordinate with the hippocampus. The researchers concluded that ErbB4 helps link the two brain regions to maintain attention.

Monkeys' brains synchronize as they collaborate to perform a motor task: Levels of synchronicity in motor cortex are influenced by proximity, social status -- ScienceDaily

During one task, one monkey, called the passenger, sat in an electronic wheelchair programmed to reach a reward across the room, a fresh grape. A second monkey, the observer, was also in the room watching the first monkey's trajectory toward the reward. Electrical activity in the motor cortex of each monkey's brain was recorded simultaneously. An analysis showed that when the passenger traveled across the room under the attentive gaze of the observer, pools of neurons in their motor cortices showed episodes of synchronization. The researchers found these episodes of interbrain cortical synchronization (ICS) could predict the location of the passenger's wheelchair in the room, as well its velocity. The brain activity could also predict how close the animals were to each other, as well as the passenger's proximity to the reward. The most compelling finding, they said, was that ICS could predict another key social parameter -- the rank of the monkeys in the colony.

Slow, steady waves keep brain humming: Such rhythmic waves linked to state of consciousness -- ScienceDaily

As the waves passed through each area of the brain, they enhanced the electrical activity there. Neurons fired more enthusiastically when a wave was in the vicinity. Moreover, the ultra-slow waves persisted when the mice were put under general anesthesia, but with the direction of the waves reversed. "There is a very slow process that moves through the brain to create temporary windows of opportunity for long-distance signaling," Mitra said. "The way these ultra-slow waves move through the cortex is correlated with enormous changes in behavior, such as the difference between conscious and unconscious states." The fact that the waves' trajectory changed so dramatically with state of consciousness suggests that ultra-slow waves could be fundamental to how the brain functions. If brain areas are thought of as boats bobbing about on a slow-wave sea, the choppiness and direction of the sea surely influences how easily a message can be passed from one boat to another, and how hard it is for two boats to coordinate their activity.

Honeybees may unlock the secrets of how the human brain works -- ScienceDaily

"The study also supports the view of bee colonies as being similar to complete organisms or better still, superorganisms, composed of a large number of fully developed and autonomous individuals that interact with each other to bring forth a collective response. "With this view in mind, parallels between bees in a colony and neurons in a brain can be traced, helping us to understand and identify the general mechanisms underlying psychophysics laws, which may ultimately lead to a better understanding of the human brain. Finding similarities between the behaviour of honeybee colonies and brain neurons is useful because the behaviour of bees selecting a nest is simpler than studying neurons in a brain that makes decisions."

How would the brain process alien music? -- ScienceDaily

In language and music, dependencies are conceptual threads that bind two things together. Non-local dependencies bind non-adjacent items. For example, in pop music, the second instance of a verse, following a chorus, would have a non-local dependency with the first instance of the verse. Experientially, it is clear to us that we are hearing a sequence that we have heard before. According to Cheung, composers use such devices to build up our expectations and elicit strong emotional responses to the music. But how does the brain recognize these patterns and what does this have to do with Paul Broca?

Is your stress changing my brain? Stress isn't just contagious; it alters the brain on a cellular level -- ScienceDaily

The study's lead author, Toni-Lee Sterley, a postdoctoral associate in Bains' lab said, "What was remarkable was that CRH neurons from the partners, who were not themselves exposed to an actual stress, showed changes that were identical to those we measured in the stressed mice."

Another way morning exercise resets your circadian rhythm?

In flies, temperature could be sensed directly by neurons in the brain or via nerve impulses from sensory organs in the body. To distinguish between the two, the investigators genetically manipulated or physically removed the sensory organs and found that the DN1p neurons no longer responded to changes in temperature. This meant that the clock interprets temperature signals from the body rather than sensing temperature changes directly. The circadian clock of larger animals and humans is also sensitive to changes in temperature, and because of their larger size, would require input from external sensory organs. The fact that, despite its small size, the fly clock also relies on temperature sensors outside the brain suggests that the findings of this study could have broad implications in the control of sleep in humans.

Our circadian clock sets the rhythm for our cells’ powerhouses -- ScienceDaily

Countless genetically controlled clocks tick inside different parts of our bodies, such as the liver, kidneys and heart. Among other things, they initiate many metabolic processes, ensuring that these occur at the optimal time of day. Mitochondria -- small organelles that exist in almost all our cells and supply them with energy -- play an important role in these cellular processes. Until now, it was unclear how exactly the 24-hour circadian rhythm regulated energy metabolism. Fission protein sets the rhythm In most cells, mitochondria connect in a constantly changing network that can adapt to various conditions. Mitochondria can thus fuse together and then divide again. Disruption of this fission-fusion dynamic can lead to health problems. Researchers have now investigated exactly how the mitochondrial network interacts with our internal biological clock by using a combination of in vitro models and clock-deficient mice or mice with impaired mitochondrial fission. Their results show that the mitochondrial fission-fusion cycle is controlled by the fission protein Drp1, which is in turn synchronized by an internal biological clock. This rhythm is integral to determining when and how much energy the mitochondria can supply. "The time of day determines the design of the mitochondrial network, and this, in turn, influences the cells' energy capacity," explains study leader Professor Anne Eckert from the University of Basel's Transfaculty Research Platform Molecular and Cognitive Neurosciences MCN.

Understanding the smallest brain circuits: Researchers reveal how anatomically distinct microcircuit brain networks suppress each other, compete and collaborate -- ScienceDaily

"We observe that when some neurons speed up, others slow down-and they do this in a coordinated fashion over several seconds," Galán said. "What we are discovering here, revealing for the first time, is a mode of operation of the brain circuits that shows you cannot have all of your networks operating at once," he said. Galán and his team explain those two anatomically distinct and competing networks in the smallest of the brain's microcircuits, calling them "anti-correlated cortical networks," in a recent issue of Scientific Reports. Co-authors include biology Professor Hillel Chiel and undergraduate students Nathan Kodama (first author), Tianyi Feng, James Ullett and Siddharth Sivakumar. Galán said the discovery was especially gratifying because it culminates the testing of a mathematical model he developed a decade ago. "That was a theoretical prediction-the idea that the wiring of brain circuits could be inferred from their spontaneous activity," he said. "When we were finally able to test this idea experimentally, we discovered the competing neural networks; it all came together in this study."

Neuroscientists discover a brain signal that indicates whether speech has been understood -- ScienceDaily

To test if human brains actually compute the similarity between words as we listen to speech, the researchers recorded electrical brainwave signals recorded from the human scalp -- a technique known as electroencephalography or EEG -- as participants listened to a number of audiobooks. Then, by analysing their brain activity, they identified a specific brain response that reflected how similar or different a given word was from the words that preceded it in the story. Crucially, this signal disappeared completely when the subjects either could not understand the speech (because it was too noisy), or when they were just not paying attention to it. Thus, this signal represents an extremely sensitive measure of whether or not a person is truly understanding the speech they are hearing, and, as such, it has a number of potential important applications.

Cells communicate in a dynamic code: A critically important intercellular communication system is found to encode and transmit more messages than previously thought. -- ScienceDaily

The team studied two chemically similar Notch ligands, dubbed Delta1 and Delta4. They discovered that despite the ligands' similarity the two activated the same receptor with strikingly different temporal patterns. Delta1 ligands activated clusters of receptors simultaneously, sending a sudden burst of transcription factors down to the nucleus all at once, like a smoke signal consisting of a few giant puffs. On the other hand, Delta4 ligands activated individual receptors in a sustained manner, sending a constant trickle of single transcription factors to the nucleus, like a steady stream of smoke.

What magnets have to do with pistachios: Synchrony in ecology puts ising model to the test -- ScienceDaily

In magnetic materials, forces between neighboring atoms tend to keep electrons aligned so their magnetic forces add together. The Ising model makes quantitative predictions of how neighbor-to-neighbor interactions can create alignments over large distances. If neighboring trees are synchronized, it implies they are communicating somehow. While the authors do not identify the means of this communication, they suggest it may be a consequence of root grafting, where roots intertwine. Grafting may help one tree "tell" another that it's time to produce, which may help neighboring trees synchronize their production. The Ising model helps predict how interactions between trees next to each other spread through the whole orchard.

Neurons get the beat and keep it going in drumrolls -- ScienceDaily

The researchers recorded the activities of individual neurons in the hippocampus, which is located in the lower center of the brain, with a robotic device called a patch clamp. It's a hollow glass needle one micron in diameter that latches onto a single neuron via suction and measures its electrical activity. The researchers observed electrical rumblings, symbolized here by a drumroll. And they observed spikes, symbolized here by a cymbal crash. Though the pattern of rumblings wasn't uniform, it rose and fell like a drumroll undulating between softer and louder volumes. Spikes occurred much more rarely than drumbeats, but with notable timing. "The spikes repeated in the same spots with high precision, so they weren't just random," Singer said. "They came around the peaks of rumblings, not always right on top of a peak but within a hair of it." It would be like a cymbal crash hitting not every time, but every few times the undulating drumroll topped a volume peak. And the drumroll-cymbal-crash patterns sustained themselves for surprisingly long periods. "The time periods of activity that was structured like this were much longer than we expected," Singer said. "People have shown sustained periods of signaling like this for 100 to 300 milliseconds before, but this appears to be the first time it's been seen for 900 milliseconds (nearly a full second), and it may go on even longer."

Body movements just need a 'puff' of dopamine to get started: A new study in mice suggests that a burst of dopamine levels at the beginning of a movement only, as opposed to all the time, is what gets us going; this may have important implications for treating Parkinson's disease -- ScienceDaily

Experts have long worked to understand why the absence of these so-called dopaminergic neurons (and therefore, the lack of dopamine) leads to the motor dysfunctions that are the hallmarks Parkinson's, such as stiffness, slow movements and tremors. The more widely accepted explanation has been that, in order to move normally, our brain constantly needs a certain level of dopamine -- something that Parkinson's patients progressively lose. However, as psychiatrist and neuroscientist Joaquim Alves da Silva, first author of the new study, explains, people with Parkinson's disease actually "do not have a global motor problem." As incredible as it may seem, they can even ride a bicycle -- a rather complex motor task -- if pushed at the right time. The motor problems that Parkinson's patients experience are more specific, and this was the observation that motivated the new study. "The patients' problem is in the difficulty to initiate movement and in the slowness of movement," adds Alves da Silva. In fact, as these authors now showed in mice not afflicted by Parkinson's disease, for a movement to unfold correctly it only takes a "puff" of dopamine -- or more precisely, a peak of dopaminergic cell activity -- right before the movements starts. In other words, dopamine (or, in this case, the activity of the cells that produce it) is just a "trigger" for voluntary movements. "Our most important result is that we showed, for the first time, that the change in neural activity is necessary to promote movement," says Alves da Silva. "And also for the first time, we showed that the dopamine peak that precedes movement initiation does not only regulate initiation, but also regulates movement vigor."

Similar neural responses predict friendship | Nature Communications

Two of the “Big Five” personality traits—extraversion11,12 and openness to experience12—appear to be more similar among friends than among individuals who are not friends with one another. However, the remaining Big Five traits do not predict friendship formation well13. Similarities in conscientiousness and neuroticism are not associated with friendship formation12, and evidence for more similar levels of trait agreeableness among friends has been found in some studies12, but not in others11.

irregular sleep screws you

the researchers were able to assess the timing of circadian rhythms. On average, melatonin was released 2.6 hours later in students with the most irregular sleep patterns, compared with students with more regular sleep patterns.

Monthly brain cycles predict seizures in patients with epilepsy: Implanted electrodes reveal long-term patterns of seizure risk -- ScienceDaily

The new study, based on recordings from the brains of 37 patients fitted with NeuroPace implants, confirmed previous clinical and research observations of daily cycles in patients' seizure risk, explaining why many patients tend to experience seizures at the same time of day. But the study also revealed that brain irritability rises and falls in much longer cycles lasting weeks or even months, and that seizures are more likely to occur during the rising phase of these longer cycles, just before the peak. The lengths of these long cycles differ from person to person but are highly stable over many years in individual patients, the researchers found.

Brain is strobing, not constant, neuroscience research shows: First sight, now sound: New discoveries show perception is cyclical -- ScienceDaily

The key findings are: 1. auditory perception oscillates over time and peak perception alternates between the ears -- which is important for locating events in the environment; 2. auditory decision-making also oscillates; and 3. oscillations are a general feature of perception, not specific to vision. The work is the result of an Italian-Australian collaboration, involving Professor David Alais, Johahn Leung and Tam Ho of the schools of Psychology and Medical Science, University of Sydney; Professor David Burr from the Department of Neuroscience, University of Florence; and Professor Maria Concetta Morrone of the Department of Translational Medicine, University of Pisa. With a simple experiment, they showed that sensitivity for detecting weak sounds is not constant, but fluctuates rhythmically over time. It has been known for some years that our sight perception is cyclical but this is the first time it has been demonstrated that hearing is as well. "These findings that auditory perception also goes through peaks and troughs supports the theory that perception is not passive but in fact our understanding of the world goes through cycles," said Professor Alais from the University of Sydney. "We have suspected for some time that the senses are not constant but are processed via cyclical, or rhythmic functions; these findings lend new weight to that theory." These auditory cycles happen at the rate of about six per second. This may seem fast, but not in neuroscience, given that brain oscillations can occur at up to 100 times per second.