Recent quotes:

How do muscles know what time it is? -- ScienceDaily

In collaboration with Italian and Austrian colleagues (from the Venetian Institute of Molecular Medicine and the Universities of Padua, Graz, and Trieste) the researchers identified certain processes that are switched on at night by the regulators of the internal clock: "They include, for example, fat storage, glucose metabolism and insulin sensitivity," explains Henriette Uhlenhaut. At the same time, opposing processes such as fatty acid oxidation and protein breakdown are throttled down, according the authors. These patterns are especially pronounced in the hours before awakening and are thought to prepare the muscles for the day ahead. In the final step, the scientists investigated possible ways to intervene in these processes. To this end, they examined mice lacking these master regulators. Without a circadian clock, the animals were leaner, with less fat and more muscle mass. "Taken together, our work has revealed an entire metabolic network at multiple levels," Uhlenhaut explains. "Another biologically exciting finding is that, contrary to expectations, the key regulator is not centrally located in the brain, but is in fact the internal clock of the muscle cells themselves." In the long term, the authors will investigate the mechanisms also in humans and try to find a way for therapeutic interventions. Their hope is that it might be possible to counteract insulin resistance in type 2 diabetes or to stimulate energy use to combat obesity.

Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males

After 8 weeks, the 2 Way ANOVA (Time * Diet interaction) showed a decrease in fat mass in TRF compared to ND (p = 0.0448), while fat-free mass, muscle area of the arm and thigh, and maximal strength were maintained in both groups. Testosterone and insulin-like growth factor 1 decreased significantly in TRF, with no changes in ND (p = 0.0476; p = 0.0397). Adiponectin increased (p = 0.0000) in TRF while total leptin decreased (p = 0.0001), although not when adjusted for fat mass. Triiodothyronine decreased in TRF, but no significant changes were detected in thyroid-stimulating hormone, total cholesterol, high-density lipoprotein, low-density lipoprotein, or triglycerides. Resting energy expenditure was unchanged, but a significant decrease in respiratory ratio was observed in the TRF group.

When muscles weaken with age -- ScienceDaily

Working with our colleagues from the University of Aachen, we first systematically surveyed the changes taking place in the peripheral nerves of people aged between 65 and 79," Rudolf Martini describes his team's approach. During this, the researchers encountered an increased number of macrophages in the samples. Macrophages are cells of our body's immune system that engulf, digest and dispose microbes, foreign substances, cellular debris, aging cells etc. They set inflammatory responses in motion, help heal wounds and cleanse the tissue. Unfortunately, however, they also cause damage in some diseases. To find out whether this also applies to age-related nerve degeneration, the scientists performed an experiment on mice. "For this purpose, we looked more closely at the nerves of 24-month-old mice which is an advanced age for mice," Rudolf Martini explains. It turned out that the age-related changes in the mice's peripheral nerves are very similar to those in humans. As in their human counterparts, the number of macrophages was increased in the mice. Also, the older animals had less strength than their younger siblings and their motor endplates, the synapses connecting nerves and muscle fibres, were also less intact.