Recent quotes:

Everything big data claims to know about you could be wrong: To understand human health and behavior, researchers would do better to study individuals, not groups -- ScienceDaily

"If you want to know what individuals feel or how they become sick, you have to conduct research on individuals, not on groups," said study lead author Aaron Fisher, an assistant professor of psychology at UC Berkeley. "Diseases, mental disorders, emotions, and behaviors are expressed within individual people, over time. A snapshot of many people at one moment in time can't capture these phenomena." Moreover, the consequences of continuing to rely on group data in the medical, social and behavioral sciences include misdiagnoses, prescribing the wrong treatments and generally perpetuating scientific theory and experimentation that is not properly calibrated to the differences between individuals, Fisher said.

Timing is everything, to our genes -- ScienceDaily

Using RNA sequencing, the research team tracked gene expression in dozens of different non-human primate tissues every 2 hours for 24 hours. The team found that each tissue contained genes that were expressed at different levels based on the time of day. However, the number of these "rhythmic" genes varied by tissue type, from around 200 in pineal, mesenteric lymph nodes, bone marrow and other tissues to more than 3,000 in prefrontal cortex, thyroid, gluteal muscle and others. In addition, genes that were expressed most often tended to show more rhythmicity, or variability by time. Of the 25,000 genes in the primate genome, nearly 11,000 were expressed in all tissues. Of those (which mostly govern routine cellular functions, such as DNA repair and energy metabolism), 96.6 percent were particularly rhythmic in at least one tissue, varying drastically by when they were sampled.

Keeping up the pressure: New neural mechanism is found to regulate the chronic stress response -- ScienceDaily

The newly discovered nerve cells express a receptor, CRFR1, on their outer walls, which enables them to take in the message of the CRF neurotransmitter. The scientists' experiments showed that, in mice, the cortisol actually increases the number of CRFR1 receptors on these nerve cells, suggesting a positive feedback loop that could be self-renewing, rather than abating.

» The Collapse of Complex Business Models Clay Shirky

When ecosystems change and inflexible institutions collapse, their members disperse, abandoning old beliefs, trying new things, making their living in different ways than they used to. It’s easy to see the ways in which collapse to simplicity wrecks the glories of old. But there is one compensating advantage for the people who escape the old system: when the ecosystem stops rewarding complexity, it is the people who figure out how to work simply in the present, rather than the people who mastered the complexities of the past, who get to say what happens in the future.

30 neurons act very differently, depending on chemical soup

Eve Marder, a prominent neuroscientist at Brandeis University, cautions against expecting too much from the connectome. She studies neurons that control the stomachs of crabs and lobsters. In these relatively simple systems of 30 or so neurons, she has shown that neuromodulators — signaling chemicals that wash across regions of the brain, omitted from Seung’s static map — can fundamentally change how a circuit functions. If this is true for the stomach of a crustacean, the mind reels to consider what may be happening in the brain of a mouse, not to mention a human.