Recent quotes:

The hard problem of consciousness is a distraction from the real one | Aeon Essays

Predictive processing can also help us understand unusual forms of visual experience, such as the hallucinations that can accompany psychosis or psychedelic trips. The basic idea is that hallucinations occur when the brain pays too little attention to incoming sensory signals, so that perception becomes unusually dominated by the brain’s prior expectations. Different sorts of hallucination – from simple geometric experiences of lines, patterns and textures to rich hallucinatory narratives full of objects and people – can be explained by the brain’s over-eagerness to confirm its predictions at different levels in the cortical hierarchy.

Consciousness is tied to 'entropy', say researchers -

Key to this has been the study of synchronization – how the electrical activity of one set of neurons can oscillate in phase with that of another set. Synchronization in turn implies that those sets of neurons are physically tied to one another, just as oscillating physical systems, such as pendulums, become synchronized when they are connected together. The latest work stems from the observation that consciousness, or at least the proper functioning of brains, is associated not with high or even low degrees of synchronicity between neurons but by middling amounts. Jose Luis Perez Velazquez, a biochemist at the University of Toronto, and colleagues hypothesized that what is maximized during consciousness is not connectivity itself but the number of different ways that a certain degree of connectivity can be achieved.

Dopamine signaling as a neural correlate of consciousness

The neural correlates of consciousness are largely unknown but many neural circuits are likely to be involved. Our experiments with mice that cannot synthesize dopamine suggest that dopamine signaling is a critical component necessary for the expression of consciousness. Although dopamine-deficient mice are awake and respond to many stimuli, they are unmotivated and have profound deficits in all but the simplest learning tasks. Dopamine-deficient mice are unable to attend to salient sensory information, integrate it with prior experience, store it in long-term memory, or choose appropriate actions. While clearly conscious from a general anesthetic point of view, dopamine-deficient mice have marginal arousal and appear to be virtually unconscious from a behavioral point of view. Restoration of dopamine signaling within the striatum by viral gene therapy strategies restores most behaviors.

Mind plus mind = new mind

Objective reality is just conscious agents, just points of view. Interestingly, I can take two conscious agents and have them interact, and the mathematical structure of that interaction also satisfies the definition of a conscious agent. This mathematics is telling me something. I can take two minds, and they can generate a new, unified single mind. Here’s a concrete example. We have two hemispheres in our brain. But when you do a split-brain operation, a complete transection of the corpus callosum, you get clear evidence of two separate consciousnesses. Before that slicing happened, it seemed there was a single unified consciousness. So it’s not implausible that there is a single conscious agent. And yet it’s also the case that there are two conscious agents there, and you can see that when they’re split. I didn’t expect that, the mathematics forced me to recognize this. It suggests that I can take separate observers, put them together and create new observers, and keep doing this ad infinitum. It’s conscious agents all the way down.

How the brain produces consciousness in 'time slices' of .4 seconds

The new model proposes a two-stage processing of information. First comes the unconscious stage: The brain processes specific features of objects, e.g. color or shape, and analyzes them quasi-continuously and unconsciously with a very high time-resolution. However, the model suggests that there is no perception of time during this unconscious processing. Even time features, such as duration or color change, are not perceived during this period. Instead, the brain represents its duration as a kind of "number", just as it does for color and shape. Then comes the conscious stage: Unconscious processing is completed, and the brain simultaneously renders all the features conscious. This produces the final "picture", which the brain finally presents to our consciousness, making us aware of the stimulus. The whole process, from stimulus to conscious perception, can last up to 400 milliseconds, which is a considerable delay from a physiological point of view. "The reason is that the brain wants to give you the best, clearest information it can, and this demands a substantial amount of time," explains Michael Herzog. "There is no advantage in making you aware of its unconscious processing, because that would be immensely confusing." This model focuses on visual perception, but the time delay might be different for other sensory information, e.g. auditory or olfactory.

This device can tell how conscious you are

Being conscious is about more than simply being awake -- it's also made up of "noticing and experiencing", Chennu says. "When someone is conscious, there are patterns of synchronised neural activity racing across the brain, that can be detected using EEG and quantified using our software."

Animal awareness of others' needs

As long ago as 1959, Russell Church of Brown University set up a test which allowed laboratory rats in half of a cage to get food by pressing a lever. The lever also delivered an electric shock to rats in the other half of the cage. When the first group realised that, they stopped pressing the lever, depriving themselves of food. In a similar test on rhesus monkeys reported in the American Journal of Psychiatry in 1964, one monkey stopped giving the signal for food for 12 days after witnessing another receive a shock. There are other examples of animals preferring some sort of feeling over food.

Animals plan for the future

Santino is a chimpanzee in Furuvik zoo in Sweden. In the 2000s zookeepers noticed that he was gathering little stockpiles of stones and hiding them around his cage, even constructing covers for them, so that at a later time he would have something to throw at zoo visitors who annoyed him. Mathias Osvath of Lund University argues that this behaviour showed various types of mental sophistication: Santino could remember a specific event in the past (being annoyed by visitors), prepare for an event in the future (throwing stones at them) and mentally construct a new situation (chasing the visitors away).

Pooled consciousness? No...

‘Take a sentence of a dozen words, and take twelve men and tell to each one word. Then stand the men in a row or jam them in a bunch, and let each think of his word as intently as he will; nowhere will there be a consciousness of the whole sentence’. This is how William James illustrated the combination problem of panpsychism [110]. Or take John Searle: ‘Consciousness cannot spread over the universe like a thin veneer of jam; there has to be a point where my consciousness ends and yours begins’ [117]. Indeed, if consciousness is everywhere, why should it not animate the United States of America? IIT deals squarely with this problem by stating that only maxima of integrated information exist. Consider two people talking: within each brain, there will be a major complex—a set of neurons that form a maximally irreducible cause–effect structure with definite borders and a high value of Φmax. Now let the two speak together. They will now form a system that is also irreducible (Φ > zero) due to their interactions. However, it is not maximally irreducible, since its value of integrated information will be much less than that of each of the two major complexes it contains. According to IIT, there should indeed be two separate experiences, but no superordinate conscious entity that is the union of the two. In other words, there is nothing-it-is-like-to-be two people, let alone the 300 plus million citizens making up the USA.13

Consciousness: here, there and everywhere? | Philosophical Transactions of the Royal Society B: Biological Sciences

A corollary of IIT that violates common intuitions is that even circuits as simple as a ‘photodiode’ made up of a sensor and a memory element can have a modicum of experience [80] (see also figure 5a, right panel). It is nearly impossible to imagine what it would ‘feel like’ to be such a circuit, for which the only phenomenal distinction would be between ‘this rather than not this’ (unlike a photodiode, when we are conscious of ‘light’ or of ‘dark,’ our experience is what it is because it includes scores of negative concepts, such as no colours, no shapes, no thoughts and so on, that are all available to us). But consider that normal matter at −272.15°C, one degree above absolute zero, still contains some heat. However, in practice its temperature is as cold as it gets. Similarly, there may well be a practical threshold for Φmax below which people do not report feeling much of anything, but this does not mean that consciousness has reached its absolute minimum, zero. Indeed, when we fall into a deep, dreamless sleep and don't report any experience upon being awoken, some small complex of neurons within our sleeping brain will likely have a Φmax value greater than zero, yet that may not amount to much compared to that of our rich, everyday experience.

Neurons as adventurous voyagers

Each neuron is imprisoned in your brain. I now think of these as cells within cells, as cells within prison cells. Realize that every neuron in your brain, every human cell in your body (leaving aside all the symbionts), is a direct descendent of eukaryotic cells that lived and fended for themselves for about a billion years as free-swimming, free-living little agents. They fended for themselves, and they survived.              They had to develop an awful lot of know-how, a lot of talent, a lot of self-protective talent to do that. When they joined forces into multi-cellular creatures, they gave up a lot of that. They became, in effect, domesticated. They became part of larger, more monolithic organizations. My hunch is that that's true in general. We don't have to worry about our muscle cells rebelling against us, or anything like that. When they do, we call it cancer, but in the brain I think that (and this is my wild idea) maybe only in one species, us, and maybe only in the obviously more volatile parts of the brain, the cortical areas, some little switch has been thrown in the genetics that, in effect, makes our neurons a little bit feral, a little bit like what happens when you let sheep or pigs go feral, and they recover their wild talents very fast. Maybe a lot of the neurons in our brains are not just capable but, if you like, motivated to be more adventurous, more exploratory or risky in the way they comport themselves, in the way they live their lives. They're struggling amongst themselves with each other for influence, just for staying alive, and there's competition going on between individual neurons. As soon as that happens, you have room for cooperation to create alliances, and I suspect that a more free-wheeling, anarchic organization is the secret of our greater capacities of creativity, imagination, thinking outside the box and all that, and the price we pay for it is our susceptibility to obsessions, mental illnesses, delusions and smaller problems.

Neurons as free agents

The question is, what happens to your ideas about computational architecture when you think of individual neurons not as dutiful slaves or as simple machines but as agents that have to be kept in line and that have to be properly rewarded and that can form coalitions and cabals and organizations and alliances?  This vision of the brain as a sort of social arena of politically warring forces seems like sort of an amusing fantasy at first, but is now becoming something that I take more and more seriously,

What Happens When Your Brain Says You Don't Exist : Shots - Health News : NPR

What seems to be happening is that there is a network in the brain that is responsible for internal awareness, awareness of our own body, awareness of our emotions, awareness of our self-related thoughts, and in Cotard's, it seems like that particular network is tamped down. In some sense, their own experience of their body, in all its vividness, in experience of their own emotions in all its vividness, that's compromised very severely. In some sense they're not feeling themselves vividly. It's as simple as that. But, then there's something else that's happening in the brain. It seems like parts of the brain that are responsible for rational thought are also damaged. First of all, what might be happening is a perception that arises in their brain saying that they are dead because they're not literally perceiving their own body and body states and emotions vividly and then that perception — irrational though it is — is not being shot down.

How Complex Networks Explode with Growth | Quanta Magazine

Dimitris Achlioptas, a computer scientist at the University of California, Santa Cruz, proposed a possible means for delaying a phase transition into a densely connected network, by merging the traditional notion of percolation with an optimization strategy known as the power of two choices. Instead of just letting two random nodes connect (or not), you consider two pairs of random nodes, and decide which pair you prefer to connect. Your choice is based on predetermined criteria — for instance, you might select whichever pair has the fewest pre-existing connections to other nodes. Because a random system would normally favor those nodes with the most pre-existing connections, this forced choice introduces a bias into the network — an intervention that alters its typical behavior. In 2009, Achlioptas, Raissa D’Souza, a physicist at the University of California, Davis, and Joel Spencer, a mathematician at New York University’s Courant Institute of Mathematical Sciences, found that tweaking the traditional percolation model in this way dramatically changes the nature of the resulting phase transition. Instead of arising from a slow, steady continuous march toward greater and greater connectivity, connections emerge globally all at once throughout the system in a kind of explosion — hence the moniker “explosive percolation.”

The smart unconscious

Hassin’s key experiment involved presenting arithmetic questions unconsciously. The questions would be things like “9 – 3 – 4 = ” and they would be followed by the presentation, fully visible, of a target number that the participants were asked to read aloud as quickly as possible. The target number could either be the right answer to the arithmetic question (so, in this case, “2”) or a wrong answer (for instance, “1”). The amazing result is that participants were significantly quicker to read the target number if it was the right answer rather than a wrong one. This shows that the equation had been processed and solved by their minds – even though they had no conscious awareness of it – meaning they were primed to read the right answer quicker than the wrong one.
Additionally, each patient participates in months of intensive psychotherapy before and after treatment.  “They undergo an extensive review of their life,” Dr. Ross explained. “The goal is to try to construct a new narrative around cancer.” An important part of that narrative is death. “We don’t die well in America,” co-principal investigator and palliative care specialist Dr. Anthony Bossis explained. “It’s the most taboo conversation in medicine. I think for much of healthcare, it represents a failure on the part of the provider. Most people die in ICUs with tubes throughout their bodies and not in a spiritual state.” “Our patients come in with a kind of demoralization syndrome reminiscent of post-traumatic stress disorder,” co-principal investigator Dr. Jeffrey Guss added. “Cancer for them is an enormous existential crisis. Life becomes nothing but, ‘my chemo, my radiation, my cancer numbers.’ Life outside of cancer shrinks. They’re petrified by death. They become immobilized. The whole point is to dislodge them from that. What’s remarkable is that even though we don’t tell them what narratives to form, there is an enormous commonality. Patients will come to me and say, ‘I understand intuitively now that love is truly the most important force on the planet. I experienced a profound sense of peace that I never felt before and it has stayed with me. I know now that my consciousness is bigger than me.’”
Before the Internet, the brain read mostly in linear ways — one page led to the next page, and so on. Sure, there might be pictures mixed in with the text, but there didn’t tend to be many distractions. Reading in print even gave us a remarkable ability to remember where key information was in a book simply by the layout, researchers said. We’d know a protagonist died on the page with the two long paragraphs after the page with all that dialogue.The Internet is different. With so much information, hyperlinked text, videos alongside words and interactivity everywhere, our brains form shortcuts to deal with it all — scanning, searching for key words, scrolling up and down quickly. This is nonlinear reading, and it has been documented in academic studies. Some researchers believe that for many people, this style of reading is beginning to invade when dealing with other mediums as well.
The philosopher John Searle, in his review of Consciousness, asked, “Why isn’t America conscious?” After all, there are 300 million Americans, interacting in very complicated ways. Why doesn’t consciousness extend to all of America? It’s because integrated information theory postulates that consciousness is a local maximum. You and me, for example: We’re interacting right now, but vastly less than the cells in my brain interact with each other. While you and I are conscious as individuals, there’s no conscious Übermind that unites us in a single entity. You and I are not collectively conscious. It’s the same thing with ecosystems. In each case, it’s a question of the degree and extent of causal interactions among all components making up the system.