Recent quotes:

Sensor created to detect dopamine, brain disorders, in seconds -- ScienceDaily

Current methods to detect dopamine are time consuming, require rigorous sample preparation, including blood-plasma separation, as well as specialized laboratory equipment. With this device, however, a few drops of blood on a palm-sized, rectangular chip is all that is needed. "A neurotransmitter like dopamine is an important chemical to monitor for our overall well-being so we can help screen out neural disorders like Parkinson's disease, various brain cancers, and monitor mental health," said Debashis Chanda, an associate professor in UCF's NanoScience Technology Center and the study's principle investigator. "We need to monitor dopamine so that we can adjust our medical doses to help address those problems." Plasma is separated from the blood within the chip. Cerium oxide nanoparticles, which coat the sensor surface, selectively capture dopamine at microscopic levels from the plasma. The capture of dopamine molecules subsequently changes how light is reflected from the sensor and creates an optical readout indicating the level of dopamine.

Sweat holds most promise for noninvasive testing -- ScienceDaily

Last year the lab created the world's first continuous-monitoring sensor that can record the same health information in sweat that doctors for generations have examined in blood. The milestone is remarkable because the continuous sensor allows doctors to track health over time to see whether a patient is getting better or worse. And they can do so in a noninvasive way with a tiny patch applied to the skin that stimulates sweat for up to 24 hours at a time. "This is the Holy Grail. For the first time, we can show here's the blood data; here's the sweat data -- and they work beautifully together," Heikenfeld said. Heikenfeld and his students published their latest experimental findings in December in the journal Lab on a Chip. UC's study tracked how test subjects metabolized ethanol. The study concluded that sweat provided virtually the same information as blood to measure a drug's presence in the body.