Recent quotes:

Researchers Identify Molecule With Anti-Aging Effects On Vascular System - News Hub -

In this study, the research team explores the link between calorie restriction (eating less or fasting) and delaying aging, which is unknown and has been poorly studied. The findings are published in the journal Molecular Cell. The researchers identified an important, small molecule that is produced during fasting or calorie restriction conditions. The molecule, β-Hydroxybutyrate, is one type of a ketone body, or a water-soluble molecule that contains a ketone group and is produced by the liver from fatty acids during periods of low food intake, carbohydrate restrictive diets, starvation and prolonged intense exercise. “We found this compound, β-Hydroxybutyrate, can delay vascular aging,” Zou said. “That’s actually providing a chemical link between calorie restriction and fasting and the anti-aging effect. This compound can delay vascular aging through endothelial cells, which line the interior surface of blood vessels and lymphatic vessels. It can prevent one type of cell aging called senescence, or cellular aging.” Senescent cells can no longer multiple and divide. The researchers found β-Hydroxybutyrate can promote cell division and prevent these cells from becoming old. Because this molecule is produced during calorie restriction or fasting, when people overeat or become obese this molecule is possibly suppressed, which would accelerate aging.

Time-Restricted Feeding Is a Preventative and Therapeutic Intervention against Diverse Nutritional Challenges - ScienceDirect

Here we tested TRF in mice under diverse nutritional challenges. We show that TRF attenuated metabolic diseases arising from a variety of obesogenic diets, and that benefits were proportional to the fasting duration. Furthermore, protective effects were maintained even when TRF was temporarily interrupted by ad libitum access to food during weekends, a regimen particularly relevant to human lifestyle. Finally, TRF stabilized and reversed the progression of metabolic diseases in mice with preexisting obesity and type II diabetes. We establish clinically relevant parameters of TRF for preventing and treating obesity and metabolic disorders, including type II diabetes, hepatic steatosis, and hypercholesterolemia.

Strategic fasting improves race times

In this particular study, both groups actually consumed the same amount of carbohydrates, but the sleep-low group ate all of theirs between their morning and afternoon sessions while the control group also had carbs after their second workout. Both groups completed a test triathlon to assess their fitness and then a second one three weeks later to determine the effectiveness of the training method. The sleep-low group had improved their running times on the 10-km segment by an average of 75 seconds while the control group showed no improvement. The sleep low athletes also lost about 3 pounds of body fat while the control group stayed the same.

Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males

After 8 weeks, the 2 Way ANOVA (Time * Diet interaction) showed a decrease in fat mass in TRF compared to ND (p = 0.0448), while fat-free mass, muscle area of the arm and thigh, and maximal strength were maintained in both groups. Testosterone and insulin-like growth factor 1 decreased significantly in TRF, with no changes in ND (p = 0.0476; p = 0.0397). Adiponectin increased (p = 0.0000) in TRF while total leptin decreased (p = 0.0001), although not when adjusted for fat mass. Triiodothyronine decreased in TRF, but no significant changes were detected in thyroid-stimulating hormone, total cholesterol, high-density lipoprotein, low-density lipoprotein, or triglycerides. Resting energy expenditure was unchanged, but a significant decrease in respiratory ratio was observed in the TRF group.

Fasting mitigates immediate hypersensitivity: a pivotal role of endogenous D-beta-hydroxybutyrate

The results of the present study demonstrates that fasting suppress hypersensitivity reaction, and indicate that increased level of D-beta-hydroxybutyrate by fasting plays an important role, via the stabilization of mast cells, in suppression of hypersensitivity reaction.