Recent quotes:

Bad timing is depressing: Disrupting the brain's internal clock causes depressive-like behavior in mice -- ScienceDaily

Inherent circadian clocks help us function throughout the day, by telling us when to sleep, wake and eat, as well as by synchronizing our bodily processes. "It is perhaps not surprising that disruptions of our natural synchronization can have heavy impacts on our physical and mental health," Dr. Landgraf added. However, until now researchers did not know if disturbed circadian rhythms were a cause or consequence of mood disorders. In the new study, a team led by David K. Welsh has shown for the first time a causal relationship between functioning circadian clocks and mood regulation.

Midnight munchies mangle memory: Eating at the wrong time impairs learning, memory -- ScienceDaily

Some genes involved in both the circadian clock and in learning and memory are regulated by a protein called CREB (cAMP response element-binding protein). When CREB is less active, it decreases memory, and may play a role in the onset of Alzheimer's disease. In the mice fed at the wrong time, the total activity of CREB throughout the hippocampus was significantly reduced, with the strongest effects in the day. However, the master pacemaker of the circadian system, the suprachiasmatic nucleus located in the hypothalamus, is unaffected. This leads to desynchrony between the clocks in the different brain regions (misalignment), which the authors suggest underlies the memory impairment. "Modern schedules can lead us to eat around the clock so it is important to understand how the timing of food can impact cogitation" says Professor Christopher Colwell from the Department of Psychiatry and Biobehavioral Sciences at UCLA. "For the first time, we have shown that simply adjusting the time when food is made available alters the molecular clock in the hippocampus and can alter the cognitive performance of mice." Eating at the wrong time also disrupted sleep patterns. The inappropriate feeding schedule resulted in the loss of the normal day/night difference in the amount of sleep although the total time spent asleep over 24 hours was not changed. Sleep became fragmented, with the mice catching up on sleep by grabbing more short naps throughout the day and night.