Recent quotes:

Past experiences shape what we see more than what we are looking at now -- ScienceDaily

Most past vision research, however, has been based on experiments wherein clear images were shown to subjects in perfect lighting, says He. The current study instead analyzed visual perception as subjects looked at black-and-white images degraded until they were difficult to recognize. Nineteen subjects were shown 33 such obscured "Mooney images" -- 17 of animals and 16 humanmade objects -- in a particular order. They viewed each obscured image six times, then a corresponding clear version once to achieve recognition, and then blurred images again six times after. Following the presentation of each blurred image, subjects were asked if they could name the object shown. As the subjects sought to recognize images, the researchers "took pictures" of their brains every two seconds using functional magnetic resonance images (fMRI). The technology lights up with increased blood flow, which is known to happen as brain cells are turned on during a specific task. The team's 7 Tesla scanner offered a more than three-fold improvement in resolution over past studies using standard 3 Tesla scanners, for extremely precise fMRI-based measurement of vision-related nerve circuit activity patterns. After seeing the clear version of each image, the study subjects were more than twice as likely to recognize what they were looking at when again shown the obscured version as they were of recognizing it before seeing the clear version. They had been "forced" to use a stored representation of clear images, called priors, to better recognize related, blurred versions, says He.

Newfound 'organ' had been missed by standard method for visualizing anatomy -- ScienceDaily

The researchers say that no one saw these spaces before because of the medical field's dependence on the examination of fixed tissue on microscope slides, believed to offer the most accurate view of biological reality. Scientists prepare tissue this examination by treating it with chemicals, slicing it thinly, and dying it to highlight key features. The "fixing" process makes vivid details of cells and structures, but drains away any fluid. The current research team found that the removal of fluid as slides are made causes the connective protein meshwork surrounding once fluid-filled compartments to pancake, like the floors of a collapsed building.