Recent quotes:

What your friends' brains look like when they think of you: Your brain patterns are reflected in them, study finds -- ScienceDaily

The fMRI took images of each person's brain while they completed a task similar to the one they did earlier. They rated each of their friends and themselves on 48 traits, including lonely, sad, cold, lazy, overcritical, trustworthy, enthusiastic, clumsy, fashionable, helpful, smart, punctual and nice. As they expected from previous research, the researchers saw activity in the medial prefrontal cortex, a part of the brain implicated in thinking about the self and close others, as the participants thought about the personality traits of themselves and their friends. The study found that for each participant, the combined brain activity of their friends evaluating them looked a lot like their own brain activity. This suggests that order to accurately perceive another person, your neural representation of that person -- your patterns of brain activity for their identity -- has to essentially match the pattern in that persons' brain when they are thinking about themselves, Wagner said.

I feel you: Emotional mirror neurons found in the rat -- ScienceDaily

On the basis of this, researchers formulated two speculations: (a) the cingulate cortex contains mirror neurons, i.e. neurons that trigger our own feeling of pain and are reactivated when we see the pain of others, and (b) that this is the reason why we wince and feel pain while seeing the pain of others. This intuitively plausible theory of empathy however remained untested because it is not possible to record the activity of individual brain cells in humans. Moreover, it is not possible to modulate brain activity in the human cingulate cortex to determine whether this brain region is responsible for empathy. Rat shares emotions of others For the first time, researchers at the Netherlands Institute for Neuroscience were able to test the theory of empathy in rats. They had rats look at other rats receiving an unpleasant stimulus (mild shock), and measured what happened with the brain and behavior of the observing rat. When rats are scared, their natural reaction is to freeze to avoid being detected by predators. The researchers found that the rat also froze when it observed another rat exposed to an unpleasant situation. This finding suggests that the observing rat shared the emotion of the other rat. Corresponding recordings of the cingulate cortex, the very region thought to underpin empathy in humans, showed that the observing rats activated the very neurons in the cingulate cortex that also became active when the rat experienced pain himself in a separate experiment. Subsequently, the researchers suppressed the activity of cells in the cingulate cortex through the injection of a drug. They found that observing rats no longer froze without activity in this brain region.

'Mindreading' neurons simulate decisions of social partners -- ScienceDaily

The researchers go on to speculate that if simulation neurons became dysfunctional this could restrict social cognition, a symptom of autism. By contrast, they suggest overactive neurons could result in exaggerated simulation of what others might be thinking, which may play a role in social anxiety. The study's lead author, Dr Fabian Grabenhorst from the Department of Physiology, Development and Neuroscience, says: "We started out looking for neurons that might be involved in social learning. We were surprised to find that amygdala neurons not only learn the value of objects from social observation but actually use this information to simulate a partner's decisions." Simulating others' decisions is a sophisticated cognitive process that is rooted in social learning. By observing a partner's foraging choices, for instance, we learn which foods are valuable and worth choosing. Such knowledge not only informs our own decisions but also helps us predict the future decisions of our partner.

Monkeys' brains synchronize as they collaborate to perform a motor task: Levels of synchronicity in motor cortex are influenced by proximity, social status -- ScienceDaily

During one task, one monkey, called the passenger, sat in an electronic wheelchair programmed to reach a reward across the room, a fresh grape. A second monkey, the observer, was also in the room watching the first monkey's trajectory toward the reward. Electrical activity in the motor cortex of each monkey's brain was recorded simultaneously. An analysis showed that when the passenger traveled across the room under the attentive gaze of the observer, pools of neurons in their motor cortices showed episodes of synchronization. The researchers found these episodes of interbrain cortical synchronization (ICS) could predict the location of the passenger's wheelchair in the room, as well its velocity. The brain activity could also predict how close the animals were to each other, as well as the passenger's proximity to the reward. The most compelling finding, they said, was that ICS could predict another key social parameter -- the rank of the monkeys in the colony.

The brain's GPS has a buddy system -- ScienceDaily

It has been known for some time that the hippocampus maintains a mental map of space -- in fact, the 2014 Nobel Prize in Physiology or Medicine was awarded precisely for this research. 'Place cells' and 'grid cells' in the hippocampus register the location of the brain's owner in its environment, but until now, little was known about how the movements of others are tracked in the brain. Researchers put this to the test by observing the activity of hippocampal neurons in one rat (the 'self') watching another rat (the 'other') go through a simple T-maze. The self's neurons registered what the other was doing and changed their responses based on the self's location and subsequent actions. This study was published on January 11 in Science, which also contains a report of similar location awareness in the brains of bats.

Acting and thinking: Are they the same for our brain? -- ScienceDaily

"Why is the very same region important for so many different tasks? What is the relationship between motor skills, motor learning and the development of cognition in humans? These are the questions that lie at the heart of our research." A review of all the data currently available suggests that the tasks share a common process, which the scientists have termed "emulation." This process, which consists of planning and representing a movement without actually performing it, activates the brain network in the same way as real movements. "But we hypothesise that the brain goes a step further," explains Dr Ptak: "It uses such dynamic representations to carry out increasingly complex cognitive functions beyond just planning movements."

Bird contagion

This week, scientists report that New Zealand parrots can spread positive emotion, too — or at least behaviour that could indicate their state of mind. The researchers recorded the play calls of keas (Nestor notabilis) and played them back to groups of wild keas. When the birds heard the sounds, they played more vigorously and longer — certainly more than when they heard the calls of a South Island robin (Petroica australis). The calls did not, however, seem to act as an invitation to join existing birds at play. Some keas that heard them preferred to start their own play — typically embarking on feats of aerial acrobatics. With self-confessed anthropomorphism, the scientists suggest that the play calls of these birds act in the same way as infectious laughter in people (R. Schwing et al. Curr. Biol. 27, R213–R214; 2017). In its homeland, the playful kea is called the clown of the mountains. And as every good clown knows: cry and you cry alone. But laugh and the world laughs with you.